Atomic Scattering Amplitudes for Electron Diffraction*

By James A. Ibers \dagger and Jean A. Hoerni
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena 4, California, U.S.A.

(Received 4 January 1954 and in revised form 18 January 1954)

Abstract

Scattering amplitudes for 40 keV . electrons have been computed from the partial waves scattering theory for selected atoms and for scattering angles between 0° and 28°. The Thomas-Fermi potential was used in these calculations; in some instances Hartree potentials were also used and the results from the different potentials are compared.

1. Introduction

The atomic scattering amplitudes $f(\theta)$ which are required in the electron-diffraction determination of the molecular structure of gases have in the past been estimated by the first Born approximation,

$$
\begin{equation*}
f(\theta) \approx f^{B}(\theta)=\frac{2 k \alpha}{Z e^{2}} \int_{0}^{\infty} V(r) \frac{\sin s r}{s r} r^{2} d r . \tag{1}
\end{equation*}
$$

Here k is $2 \pi / \lambda, \alpha$ is $-Z e^{2} / \hbar v, s$ is $2 k \sin (\theta / 2), \theta$ is the scattering angle (twice the Bragg angle), v the velocity of the electron, and $V(r)$ is the potential energy of the incident electron in the atomic field. The X-ray form factor $F(\theta)$ is related to $f^{B}(\theta)$ by

$$
\begin{equation*}
f^{B}(\theta)=\left(-2 k \alpha / s^{2}\right)(1-F(\theta) / Z) \tag{2}
\end{equation*}
$$

Recent work (Schomaker \& Glauber, 1952; Glauber \& Schomaker, 1953) has shown that the first Born approximation, which is theoretically justified only for $-\alpha \rightarrow 0$, fails at the voltages used in electron-diffraction studies and leads, for example, to apparent asymmetry in the structures of molecules containing both heavy and light atoms. The atomic scattering amplitude actually is complex and, on the assumption that the molecular amplitude is simply a superposition of atomic amplitudes, the intensity scattered by a molecule is proportional to

$$
\begin{equation*}
\sum_{i, j}^{\prime}\left|f_{i}(\theta)\right|\left|f_{j}(\theta)\right| \cos \left[\eta_{i}(\theta)-\eta_{j}(\theta)\right] \frac{\sin s r_{i j}}{s r_{i j}} \tag{3}
\end{equation*}
$$

where $\eta(\theta)=\arg f(\theta)$ and $r_{i j}$ is the distance between atoms i and j. Complex atomic scattering amplitudes have recently been computed by the partial waves scattering theory for U and F atoms at 40 and 11 keV ., and the scattering of the UF_{6} molecule, predicted from these results, was found to be in good agreement with experiment (Hoerni \& Ibers, 1953). In this paper we extend these calculations to other atoms and to a wider range of scattering angles at 40 keV .

* This work was supported in part by the U.S. Office of Naval Research. Contribution No. 1869 from the Gates and Crellin Laboratories.
\dagger General Electric Company Predoctoral Fellow, 1953-1954.

2. Theory

The solution to the problem of elastic scattering of a beam of particles by a central potential is given by

$$
\begin{equation*}
f(\theta)=(2 i k)^{-1} \sum_{l=0}^{\infty}(2 l+1)\left(\exp \left[2 i \delta_{l}\right]-1\right) P_{l}(\cos \theta) \tag{4}
\end{equation*}
$$

When $\delta_{l} \ll 1$, the partial phases δ_{l} can be computed from the formula

$$
\begin{equation*}
\delta_{l}^{0}=\frac{k \alpha \pi}{Z e^{2}} \int_{0}^{\infty} V(r) J_{l+\frac{1}{2}}^{2}(k r) r d r \tag{5}
\end{equation*}
$$

For large values of δ_{l} we have shown (Hoerni \& Ibers, 1953) that the WKB method can be applied and that there results approximately

$$
\begin{equation*}
\delta_{l}=\frac{k \alpha}{Z e^{2}} \int_{\left(l+\frac{1}{2}\right) / k}^{\infty} V(r)\left[k^{2}-\left(l+\frac{1}{2}\right)^{2} / r^{2}\right]^{-\frac{1}{2}} d r . \tag{6}
\end{equation*}
$$

When the atom is very light (e.g. $Z<10$) the second Born approximation can be used. This approximation, which is more convenient to apply but valid only when $|f(\theta)| \approx f^{B}(\theta)$ and $\eta(\theta)$ is small, gives

$$
\begin{equation*}
\eta(\theta)=\left(k / 4 \pi f^{B}(\theta)\right) \int f^{B}\left(\mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}\right) f^{B}\left(\mathbf{k}^{\prime \prime}, \mathbf{k}\right) d \Omega_{\mathbf{k}^{\prime \prime}}, \tag{7}
\end{equation*}
$$

where \mathbf{k} and \mathbf{k}^{\prime} refer to the directions of incidence and scattering, respectively, and $\mathbf{k}^{\prime \prime}$ is integrated over the sphere $\left|\mathbf{k}^{\prime \prime}\right|=k$ (Glauber \& Schomaker, 1953).

3. Procedure and results

The choice of $V(r)$ is limited. It would be most desirable to use the Hartree-Fock potentials for all atoms. These calculations, however, have not been carried out for neutral atoms above calcium, and above krypton the Hartree calculation has been made only for tungsten and mercury (Hartree, 1946). We have therefore adopted the Thomas-Fermi potential in the approximate form of Rozental (1936):

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{r} \sum_{i=1}^{3} a_{i} \exp \left[-b_{i} r / a\right] \tag{8}
\end{equation*}
$$

where $a_{1}=0.255, a_{2}=0.581, a_{3}=0.164, b_{1}=0.246$,

Table 1. Values of $\eta(\theta)$
(Values in radians.)

$\begin{aligned} & \theta= \\ & Z \end{aligned}$	0°	1°	2°	4°	6°	8°	10°	12°	16°	20°	24°	28°
1	$0.00{ }_{5}$	0.01	0.04	0.06	0.07	0.08	0.09	$0 \cdot 10$	$0 \cdot 11$	$0 \cdot 12$	$0 \cdot 12$	$0 \cdot 13$
3	0.02	0.04	0.08	$0 \cdot 14$	$0 \cdot 18$	0.21	0.23	0.25	$0 \cdot 27$	$0 \cdot 30$	0.33	0.35
6	0.03	0.08	$0 \cdot 14$	0.23	0.30	0.36	0.41	0.44	0.51	0.56	0.60	$0 \cdot 64$
9	0.05	$0 \cdot 11$	$0 \cdot 19$	$0 \cdot 31$	0.41	$0 \cdot 50$	0.57	$0 \cdot 63$	0.72	0.79	0.85	0.91
12	0.06	$0 \cdot 13$	$0 \cdot 23$	$0 \cdot 39$	0.52	0.62	0.72	0.80	0.92	1.02	$1 \cdot 10$	$1 \cdot 16$
15	0.07	$0 \cdot 15$	0.27	$0 \cdot 46$	0.61	0.74	0.85	0.95	$1 \cdot 11$	1.23	1.32	1.40
18	0.08	$0 \cdot 17$	0.31	0.52	0.70	$0 \cdot 86$	0.98	$1 \cdot 09$	1.28	1.43	1.54	1.63
22	$0 \cdot 10$	$0 \cdot 20$	0.35	0.60	0.82	0.99	$1 \cdot 14$	$1 \cdot 27$	1.50	1.68	1.81	1.92
26	$0 \cdot 12$	$0 \cdot 22$	0.39	0.68	0.91	$1 \cdot 12$	1.29	$1 \cdot 44$	$1 \cdot 70$	1.91	2.07	$2 \cdot 20$
32	$0 \cdot 14$	$0 \cdot 26$	0.45	0.77	1.05	1.29	1.50	1.68	1.98	$2 \cdot 24$	$2 \cdot 45$	$2 \cdot 61$
38	$0 \cdot 17$	$0 \cdot 28$	0.50	0.86	$1 \cdot 17$	$1 \cdot 45$	1.69	1.89	$2 \cdot 24$	2.54	$2 \cdot 78$	2.98
44	$0 \cdot 19$	0.31	0.54	0.93	$1 \cdot 28$	1.59	1.86	$2 \cdot 09$	$2 \cdot 48$	$2 \cdot 81$	$3 \cdot 07$	$3 \cdot 31$
50	0.21	0.33	0.57	1.00	$1 \cdot 38$	1.72	$2 \cdot 01$	$2 \cdot 26$	$2 \cdot 69$	3.05	$3 \cdot 35$	$3 \cdot 62$
56	0.22	0.35	0.60	1.07	$1 \cdot 47$	1.84	$2 \cdot 15$	$2 \cdot 43$	$2 \cdot 90$	$3 \cdot 29$	$3 \cdot 61$.	$3 \cdot 90$
62	$0 \cdot 24$	$0 \cdot 36$	0.63	$1 \cdot 13$	1.57	1.95	$2 \cdot 28$	$2 \cdot 58$	3.08	$3 \cdot 50$	$3 \cdot 85$	$4 \cdot 16$
68	$0 \cdot 25$	0.38	0.65	$1 \cdot 19$	1.65	$2 \cdot 05$	$2 \cdot 41$	$2 \cdot 72$	$3 \cdot 26$	3.71	$4 \cdot 09$	$4 \cdot 40$
74	0.26	0.39	0.68	1.24	1.72	$2 \cdot 14$	$2 \cdot 52$	2.85	$3 \cdot 43$	$3 \cdot 88$	$4 \cdot 30$	$4 \cdot 63$
80	0.27	0.41	0.70	1.28	1.78	$2 \cdot 23$	$2 \cdot 63$	2.98	$3 \cdot 58$	$4 \cdot 07$	$4 \cdot 50$	$4 \cdot 85$
86	0.28	0.42	0.72	1.32	1.84	$2 \cdot 31$	$2 \cdot 73$	$3 \cdot 09$	$3 \cdot 73$	$4 \cdot 25$	$4 \cdot 68$	$5 \cdot 07$
92	0.29	0.43	0.73	1.35	1.89	$2 \cdot 38$	$2 \cdot 82$	$3 \cdot 20$	3.86	$4 \cdot 42$	$4 \cdot 86$	$5 \cdot 27$
98	0.30	0.44	0.74	1.38	1.94	$2 \cdot 45$	$2 \cdot 90$	$3 \cdot 30$	$4 \cdot 00$	$4 \cdot 58$	$5 \cdot 04$	$5 \cdot 46$

Table 2. Values of $|f(\theta)|$
(Values in Ångström units.)

$\theta=$	0°	1°	2°	4°	6°	8°	10°	12°	16°	20°	24°	28°
Z												
1	$4 \cdot 4$	0.62	$0 \cdot 222$	0.066	0.031	0.018	0.012	0.008	0.005	0.003	0.002	0.002
3	$5 \cdot 5$	1.45	0.570	$0 \cdot 186$	0.088	0.054	0.034	0.024	0.014	0.009	0.006	0.005
6	$7 \cdot 9$	$2 \cdot 35$	0.991	$0 \cdot 344$	$0 \cdot 167$	$0 \cdot 102$	0.068	0.048	0.028	0.018	0.013	0.009
9	$9 \cdot 1$	3-12	$1 \cdot 36$	0.500	0.243	$0 \cdot 150$	$0 \cdot 100$	0.070	0.041	0.027	0.019	0.014
12	$9 \cdot 9$	$3 \cdot 78$	$1 \cdot 68$	0.629	0.314	$0 \cdot 194$	$0 \cdot 129$	0.092	0.054	0.035	0.025	0.019
15	$10 \cdot 6$	$4 \cdot 36$	1.97	0.750	0.382	0.236	$0 \cdot 157$	0.113	0.067	0.044	0.031	0.023
18	11.2	$4 \cdot 87$	$2 \cdot 23$	0.860	0.445	$0 \cdot 275$	$0 \cdot 183$	$0 \cdot 132$	0.079	0.052	0.037	0.028
22	$12 \cdot 0$	$5 \cdot 50$	$2 \cdot 55$	1.00	0.521	0.323	0.218	$0 \cdot 157$	0.094	0.062	0.044	0.034
26	$12 \cdot 6$	6.07	$2 \cdot 84$	1-12	0.593	$0 \cdot 367$	$0 \cdot 250$	$0 \cdot 179$	$0 \cdot 109$	0.072	0.051	0.039
32	$13 \cdot 3$	6.81	$3 \cdot 22$	$1 \cdot 29$	$0 \cdot 688$	$0 \cdot 425$	$0 \cdot 292$	0.211	$0 \cdot 128$	0.085	0.060	0.046
38	$13 \cdot 9$	$7 \cdot 44$	$3 \cdot 56$	1.43	0.770	$0 \cdot 477$	$0 \cdot 328$	0.239	$0 \cdot 146$	0.096	0.069	0.053
44	$14 \cdot 5$	7.98	$3 \cdot 87$	1.55	0.842	0.524	$0 \cdot 361$	$0 \cdot 264$	$0 \cdot 163$	$0 \cdot 107$	0.077	0.059
50	$14 \cdot 9$	$8 \cdot 46$	$4 \cdot 14$	$1 \cdot 66$	0.904	0.568	0.391	$0 \cdot 287$	0.179	$0 \cdot 118$	0.085	0.065
56	$15 \cdot 4$	$8 \cdot 89$	$4 \cdot 36$	1.76	0.956	$0 \cdot 607$	0.418	$0 \cdot 308$	$0 \cdot 192$	0.128	0.092	0.071
62	$15 \cdot 6$	9.28	$4 \cdot 58$	1.84	1.00	$0 \cdot 641$	0.443	$0 \cdot 328$	$0 \cdot 205$	$0 \cdot 138$	0.099	0.076
68	$15 \cdot 9$	$9 \cdot 63$	$4 \cdot 78$	1.91	1.04	0.671	$0 \cdot 466$	$0 \cdot 347$	0.217	$0 \cdot 147$	$0 \cdot 106$	0.081
74	$16 \cdot 2$	9.94	$4 \cdot 96$	1.97	1.08	0.696	$0 \cdot 486$	$0 \cdot 363$	$0 \cdot 228$	$0 \cdot 155$	$0 \cdot 113$	0.086
80	$16 \cdot 4$	10.22	$5 \cdot 13$	$2 \cdot 04$	$1 \cdot 12$	0.718	0.503	0.378	$0 \cdot 238$	$0 \cdot 164$	$0 \cdot 120$	0.091
86	$16 \cdot 6$	10.49	$5 \cdot 28$	$2 \cdot 10$	1.15	0.736	0.518	0.391	$0 \cdot 246$	$0 \cdot 172$	$0 \cdot 128$	0.096
92	$16 \cdot 8$	10.73	$5 \cdot 44$	$2 \cdot 15$	$1 \cdot 18$	0.751	0.532	0.403	0.253	$0 \cdot 179$	0.135	$0 \cdot 101$
98	$16 \cdot 9$	10.95	$5 \cdot 58$	$2 \cdot 21$	1.21	0.763	$0 \cdot 546$	0.413	$0 \cdot 260$	$0 \cdot 185$	$0 \cdot 140$	0.105

$b_{2}=0.947, b_{3}=4.356$, and a, the screening radius, is $0 \cdot 4685 / Z^{1 / 3}$ in Ångström units.* Equation (8) allows analytic integration of (5), (6) and (7).
Tables 1 and 2 give the values of $\eta(\theta)$ and $|f(\theta)|$ computed from (8) for selected values of Z and θ at $39 \cdot 47 \mathrm{keV}$. (This voltage corresponds to a wavelength of $0.06056 \AA$, the calibration wavelength used in the UF_{6} studies.) It is interesting that even for very light atoms the $\eta(\theta)$ differ appreciably from zero. Comparison of $|f(\theta)|$ with $f^{B}(\theta)$, however, indicates a

* This form is a better approximation to the potential than the fit of Molière (1947) which we used in our previous paper.
maximum difference occurring at high Z of only about 30% over the range of Z and θ considered. \dagger
Some remarks are perhaps in order regarding the actual calculation. It is convenient to improve the convergence of (4) in the following way. For the real part of $f(\theta)$ we subtract term by term from (4) the series

[^0]Table 3. Calculations from Hartree potentials

$Z \quad V(r)$												
		9	$V(r)=-\left(Z e^{2} / r\right)\left[1.133 e^{-4.248 r}-0.133 e^{-127.5 r}-r\left(6.173 e^{-16.51 r}+10.50 e^{-71.43 r}\right)\right]$ (a)									
		18	$V(r)=-\left(Z e^{2} / r\right)\left[1.315 e^{-3.923 r}-0.315 e^{-88.25 r}-r\left(7.874 e^{-9.634 r}+20.21 e^{-44.22 r}\right)\right]{ }^{(b)}$									
		74	$V(r)=-\left(Z e^{2} / r\right)\left[0.1573 e^{-1.878 r}+0.6520 e^{-7.451 r}+0.1804 e^{-31.56 r}+0.0103 e^{-233.4 r}\right]$ (c)									
		80	$V(r)=-\left(Z e^{2} / r\right)\left[0.1208 e^{-1.987 r}+0.4613 e^{-5.405 r}+0.3644 e^{-16.33 r}+0.0536 e^{-78.69 r}\right]$ (d)									
						$\eta(\theta)$						
$\theta=$	0°	1°	2°	4°	6°	8°	10°	12°	16°	20°	24°	28°
Z												
9	$0 \cdot 09$	$0 \cdot 10$	$0 \cdot 13$	$0 \cdot 24$	0.34	0.43	0.50	0.56	0.65	0.72	0.77	$0 \cdot 82$
18	$0 \cdot 14$	$0 \cdot 17$	$0 \cdot 24$	$0 \cdot 47$	0.66	0.80	0.93	1.03	1-22	$1 \cdot 37$	1.51	1.63
74	$0 \cdot 23$	$0 \cdot 38$	$0 \cdot 62$	$1 \cdot 13$	1.61	2.03	$2 \cdot 41$	$2 \cdot 74$	$3 \cdot 30$	$3 \cdot 78$	$4 \cdot 17$	$4 \cdot 51$
80	$0 \cdot 28$	$0 \cdot 41$	$0 \cdot 65$	1.18	$1 \cdot 69$	$2 \cdot 13$	$2 \cdot 52$	$2 \cdot 87$	$3 \cdot 48$	$3 \cdot 95$	$4 \cdot 36$	$4 \cdot 72$
						$\|f(\theta)\|$						
$\begin{aligned} & \theta \\ & Z \end{aligned}$	0°	1°	2°	4°	6°	8°	10°	12°	16°	20°	24°	28°
9	$2 \cdot 1^{(e)}$	$1 \cdot 8^{(e)}$	$1 \cdot 22$	0.508	$0 \cdot 251$	$0 \cdot 148$	0.098	$0 \cdot 070$	0.042	0.028	0.020	0.015
18	$4 \cdot 8$	3.8	$2 \cdot 28$	0.825	0.423	0.265	$0 \cdot 184$	$0 \cdot 135$	0.080	0.054	0.039	0.029
74	$15 \cdot 2$	$8 \cdot 7$	$4 \cdot 33$	1.93	1.07	$0 \cdot 688$	0.483	$0 \cdot 363$	0.228	0.157	$0 \cdot 115$	0.091
80	13.4	$8 \cdot 6$	$4 \cdot 80$	$2 \cdot 01$	$1 \cdot 10$	0.705	0.496	0.375	$0 \cdot 236$	$0 \cdot 166$	$0 \cdot 122$	0.097
(a) Brown, 1933.												
(b) Hartree \& Hartree, 1938.												
(c) Manning \& Millman, 1936.												
(d) Hartree \& Hartree, 1935.												
(e) For very low θ, the values of $\|f(\theta)\|$ are uncertain owing to insufficient knowledge of the asymptotic behavior of theHartree potentials.												

$$
\begin{equation*}
k^{-1} \sum_{l=0}^{\infty}(2 l+1) \delta_{l}^{0} P_{l}(\cos \theta) \tag{9}
\end{equation*}
$$

and add $f^{B}(\theta)$, since substitution of (5) into (9) yields (1). For the imaginary part of $f(\theta)$ we subtract term by term the asymptotic form of $\left(1-\cos 2 \delta_{l}\right)$ for large l, namely $2 \delta_{l}^{2}$. Using (8) we have

$$
\begin{array}{r}
2 \delta_{l}^{2} \sim\left(\alpha^{2} a_{1}^{2} / b_{1}\right) \pi k a\left(l+\frac{1}{2}\right)^{-1} \exp \left[-2\left(l+\frac{1}{2}\right) b_{1} / k a\right] \\
=g\left(l+\frac{1}{2}\right), \tag{10}
\end{array}
$$

and we have for the resultant sum

$$
\begin{align*}
& (2 k)^{-1} \sum_{l=0}^{\infty}(2 l+1) g\left(l+\frac{1}{2}\right) P_{l}(\cos \theta) \\
& \quad=\frac{\left(\alpha^{2} a_{1}^{2} \pi a / b_{1}\right) \exp \left[-b_{1} / k a\right]}{\left(1-2 \exp \left[-2 b_{1} / k a\right] \cos \theta+\exp \left[-4 b_{1} / k a\right]\right)^{\frac{1}{2}}} . \tag{ll}
\end{align*}
$$

When the summations are made in this way, negligible errors arise from termination of the series for both the real and imaginary parts at $l=100$, except for $\theta=0^{\circ}$, but here an exact correction can be applied.

In order to check the reliability of the ThomasFermi potential, we have fitted the Hartree-Fock potentials for F and A and the Hartree potentials for W and Hg in the form

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{r} \sum_{i} \alpha_{i} r^{n_{i}} \exp \left[-\beta_{i} r\right] . \tag{12}
\end{equation*}
$$

Equation (12) also allows analytic integration of (5) and (6).
Values of $\eta(\theta)$ and $|f(\theta)|$ for these potentials at
$39 \cdot 47 \mathrm{keV}$. are given in Table 3. It can be seen that $|f(\theta)|$ is relatively insensitive to the potential used, except at low angles. We find, as would be expected, that the relative differences in the values of $\eta(\theta)$ computed from the Hartree potentials and from the Thomas-Fermi potential increase with decreasing Z; yet, the absolute differences do not increase. Furthermore, our limited comparison indicates that the Hartree values differ from the Thomas-Fermi values by amounts which depend somewhat on θ. but relatively little on Z. Since it is the absolute error in $\Delta \eta_{i j}=$ $\eta_{i}-\eta$, according to equation (3), which affects the accuracy of the calculation of scattered intensities, it seems best to use the Thomas-Fermi potential for all atoms rather than to use the Hartree potentials, where available, in conjunction with the ThomasFermi potential.

It is extremely difficult to give an estimate of the accuracy of the results presented in Tables 1 and 2. The actual numerical details, i.e. function values, summation, problems of convergence, etc., have all been adequately handled. We cannot be so confident of the theoretical details. No corrections have been made for polarization, electron exchange, or electron spin. The first two effects are presumably important only at very low l and the extra labor involved in the use of the Dirac equations is not justified. The WKB method is itself an approximation; however, previous investigators have found it to be reliable under comparable circumstances (Bartlett \& Welton, 1941; Gunnersen, 1952). (We employ an approximate WKB equation, (6), which we have shown gives magnitudes

$V(\mathrm{keV}$.	$\theta\left({ }^{\circ}\right)$	$\begin{gathered} \eta(\theta)_{\text {act. }} \\ \text { (radians) } \end{gathered}$	$\begin{aligned} & \eta(\theta) \text { tran. } \\ & \text { (radians) } \end{aligned}$	$\underset{(\AA)}{\|f(\theta)\|_{\text {act. }}}$	$\underset{(\AA)}{\|f(\theta)\| \text { tran. }}$	$\begin{gathered} f^{B}(\theta) \\ (\AA) \end{gathered}$
55	2	0.647	0.640	3.91	3.70	4.63
	8	1.91	1.92	0.506	$0 \cdot 470$	0.644
	16	$2 \cdot 97$	$2 \cdot 98$	0.153	0.148	0.188
	24	$3 \cdot 65$	$3 \cdot 67$	0.076	0.074	0.067
25	2	0.590	0.576	$5 \cdot 46$	$5 \cdot 75$	6.85
	8	1.90	1.90	0.826	0.914	1-19
	16	3.08	$3 \cdot 09$	0.274	0.294	0.373
	24	3.91	$3 \cdot 92$	$0 \cdot 136$	0.148	$0 \cdot 108$

and arguments differing by not more than about 3% from those computed from the more exact equation.*)

The principal source of error in the calculation probably lies in our uncertain knowledge of the atomic potentials $V(r)$, which is in fact so uncertain as to justify all our other approximations. Altogether, we feel that Tables 1 and 2 are sufficiently reliable to allow molecular structures, regardless of the atoms present, to be determined as accurately as is presently possible for compounds containing atoms of approximately the same atomic number. To be sure, the approximation of equation (3), i.e. the neglect of valence distortion, plural scattering, and the like, may not be adequate: indeed it is more doubtful for the actual atomic scattering with phase shift than for that without phase shift given by the first Born approximation. In practice, however, this approximation seems to be satisfactory.

We note that complex atomic scattering amplitudes cannot generally be used to calculate the diffraction from single crystals (Hoerni, 1954). Analogous to the X-ray case (Coster, Knol \& Prins, 1930), complex f-values used in the kinematical theory may lead to different intensities for the reflections $h k l$ and $\bar{h} \vec{l} \bar{l}$ in a crystal lacking a center of symmetry. At the same time, however, dynamical interactions arise among a number of diffracted beams in the crystal, so that even with complex f-values the range of validity of the kinematical theory is limited to extremely small crystals.

4. Extension to other voltages

Our results are directly applicable only for $V=V_{o}=$ 39.47 keV . For voltages V not too different from V_{o}, the following transformations might prove useful:

$$
\begin{align*}
& \eta(Z, \theta, V) \approx \eta\left(Z^{\prime}, \theta^{\prime}, V_{o}\right) \text { if } \\
& Z^{\prime}=Z\left(v_{o} \mid v\right), \sin \left(\theta^{\prime} \mid 2\right)=\left(Z^{\prime} \mid Z\right)^{1 / 3}\left(k / k_{o}\right) \sin (\theta / 2), \tag{13}
\end{align*}
$$

[^1]\[

$$
\begin{gather*}
|f(Z, \theta, V)| \approx\left|f\left(Z^{\prime \prime}, \theta^{\prime \prime}, V_{o}\right)\right| \text { if } \\
Z^{\prime \prime}=Z\left(k v_{o} \mid k_{o} v\right)^{3}, \sin \left(\theta^{\prime \prime} \mid 2\right)=\left(Z^{\prime \prime} \mid Z\right)^{1 / 3}\left(k / k_{o}\right) \sin (\theta / 2), \tag{14}
\end{gather*}
$$
\]

where $v_{o}=1 \cdot 1148 \times 10^{10} \mathrm{~cm} . \mathrm{sec} .^{-1}$ and $k_{o}=103.75 \AA^{-1}$ refer to 39.47 keV . In Table 4 results computed for $Z=60$ for 25 and 55 keV . using (4) are compared with the values deduced from Tables 1 and 2 using (13) and (14). These transformations were suggested by the fact that they hold rigorously both for $f^{B}(\theta)$ and, if one assumes the simple screened-Coulomb field $-Z e^{2} e^{-r / a} / r$ and the second Born approximation, for $\eta(\theta)$ (Glauber \& Schomaker, 1953). The agreement exhibited in Table 4 for $\eta(\theta)$ is remarkable but we do not imply that such agreement can be obtained in all cases; the agreement for $|f(\theta)|$ is not as good but the indication is that $|f(\theta)|_{\text {transformed }}$ are more reliable than $f^{B}(\theta)$.

We wish to thank Prof. Verner Schomaker for his helpful criticism of the manuscript.

References

Bartell, L. S. \& Brockway, L. O. (1953). Phys. Rev. 90, 833.
Bartlett, J. H. Jr. \& Welton, T. A. (1941). Phys. Rev. 59, 281.
Brown, F. W. (1933). Phys. Rev. 44, 214.
Coster, D., Knol, K. S. \& Prins, J. A. (1930). Z. Phys. 63, 345.
Glauber, R. \& Schomaker, V. (1953). Phys. Rev. 89, 667.

Gunnersen, E. M. (1952). Aust. J. Sci. Res. A, 5, 258.
-Hartree, D. R. (1946). Rep. Phys. Soc. Progr. Phys. 11, 113.

Hartree, D. R. \& Hartree, W. (1935). Proc. Roy. Soc. A, 149, 210.
Hartree, D. R. \& Hartree, W. (1938). Proc. Roy. Soc. A, 166, 450.
Hoerni, J. A. (1954). In preparation.
Hoerni, J. A. \& Ibers, J. A. (1953). Phys. Rev. 91, 1182.
Manning, M. F. \& Millman, J. (1936). Phys. Rev. 49, 848.

Moliere, G. (1947). Z. Naturforsch. 2a, 133.
Rozental, S. (1936). Z. Phys. 98, 742.
Schomaker, V. \& Glauber, R. (1952). Nature, Lond. 170, 290.

[^0]: \dagger The maximum difference for argon is about 4%. This relative reliability of $f^{B}(\theta)$ accounts for the satisfactory agreement found by Bartell \& Brockway (1953) between the X-ray form factor for argon calculated from the HartreeFock potential and that obtained by use of the Born approximation from electron-intensity data.

[^1]: * The use of equation (6) together with the differences in the form of the approximate fit of the Thomas-Fermi potential and the use of a convergence factor for the imaginary part of $f(\theta)$ account for the differences in the values for U given here and given previously.

